ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JETIR.ORG JOURNAL OF EMERGING TECHNOLOGIES AND JETIR

INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Analytical Approach To Evaluate The Behavior Of Overhead Tank With P-Delta Analysis

¹ Shubam Kumar Balmiki, ² Himmi Gupta

¹ ME Student, ²Assistant Professor

^{1,2} Department of Civil Engineering,

^{1,2} National Institute of Technical Teachers Training and Research (NITTTR), Chandigarh, India.

Abstract: When lateral loads are applied directly to a structure, the P- Delta effect typically results, with the deformed shape of the structure being the dominant factor in the structure's equilibrium state. When the elements are damaged, this type of influence is taken into account in second order analysis. In high rise buildings, vertical loads create additional loads at distorted regions as they travel along the structural members. The structure's study does not take this increased load into account. To analyze the structure and research the effects of P-Delta, an accurate mathematical model of the structure is taken into consideration. In current study, the overhead flat surfaced tank was analysis with and without p-delta analysis and the results were recorded and compared.

Index Terms - STAAD.Pro, P-Delta, Overhead Tank, Seismic Analysis.

I. INTRODUCTION

The concept of design of various structures varies on many conditions such as type of construction material, type of service provided by the structure, type of loading etc. the process of structural design is a analytical and methodological investigation in relation to the strength, stability and rigidity of any structure such as buildings, bridges etc. The main principle behind conducting the structural analysis and design is to create the structure that can resist the applied forces and moments and transfers the load through different structural members to the ground without any failure so that it can serve its purpose during its intended lifespan. It the structure is not properly design and analyzed, then the structure might fail under applied force in one way or the other such as failure due to compression, tension, shear etc. and therefore fail to serves its intended purpose. This not only is detrimental to the structure but also harmful the human lives using that structure. A well-engineered structure will stay strong throughout its lifespan while minimizing the costly and hazardous failures.

When lateral loads are applied directly to a structure, the P-effect typically results, with the deformed shape of the structure being the dominant factor in the structure's equilibrium state. When the elements are damaged, this type of influence is taken into account in second order analysis. In high rise buildings, vertical loads create additional loads at distorted regions as they travel along the structural members. The structure's study does not take this increased load into account. To analyses the structure and research the effects of P-Delta, an accurate mathematical model of the structure is taken into consideration. When P-Delta is taken into account, second-order analysis combines two effects to provide a resolution as under:

Theory of large displacement: - In this stage, both the forces and moments are being considered due to deformed shape of building along with the members.

Stress stiffening: - In this particular stage, the effect of vertical load on structure stiffness has been observed. Tensile loads often straighten an element's geometry, increasing stiffness, whereas compressive loads emphasize deformation, reducing stiffness of the structure.

Figure 1. P-Delta Effect on Column.

Tall buildings that are subject to gravity loads and lateral displacement from wind or other factors typically exhibit P-Delta effects. A P-Delta Analysis should be carried out to account for the non-linearities if the lateral displacement and/or the vertical axial stresses across the structure are significant. When compared to a P-Delta (Non-Linear) Analysis, a linear static analysis frequently significantly underestimates displacement (among other conclusions).

II. MODELING OF THE TANK:

Models in STAAD.Pro: Flat bottom Overhead tank was modeled in Bentley's Staad.Pro (connect edition) software. Different input parameters such as dia. of tank, height of tank, stagging height, centre to centre distance between the bracing etc were determined before modeling the tank in the software. Different concrete properties were assigned to various structural members as per the requirement.

S.	Parameter	Value
No.		
1	Capacity of tank	115 KL
2	Dia. of tank	7.0 m
3	Height of Tan <mark>k</mark>	3.3 m
4	Free Board	0.3 m
5	Water height	3.0 m
6	Stagging Height	9.0 m and 12.0 m
7	Footing Depth	2.0 m
8	Centre to centre Distance Between the bracing	3.0 m

Table:	1. Iı	nput l	Param	eters	for T	ank	Model	

Figure 2. 3-D view of Flat Bottom Overhead Tank.

Water Pressure of Tank Walls: The conditions were considered for analyzing the tank structure i.e. working condition in which the free board is present and hydrotest condition in which there was no free board in the tank which represents the condition in which the water level is touching the top slab of the tank. The water pressure for both the cases were determined as under:

Water Pressure on tank	walls under Hydro-Test C	Condition:
V Cover Slab	Depth from Top	Water Pressure
	(m)	(kN/m2) at 0.5m
		increment in height
Tank Wall	0.0	0.00
+	0.3	3.00
	0.8	8.00
	1.3	13.00
▲	1.8	18.00
	2.3	23.00
	2.8	28.00
	3.3	
Bing Ream Base Slab		
		33.00

www.jetir.org (ISSN-2349-5162)

Water Pressure on tank walls under Working Condition:									
√-Cover Slab	Depth from Top	Water Pressure							
	(m)	(kN/m2) at 0.5m							
$ \longrightarrow $		increment in height							
Tank Wall	FREE H	30ARD (0.3m)							
▲	0.0	0.0							
	0.5	5.0							
▲ →	1.0	10.0							
	1.5	15.0							
	2.0	20.0							
	2.5	25.0							
	3.0								
Ring Beam Base Slab									
		30.0							

P-Delta Analysis: In structure $P-\Delta$ effect generally arises due to the direct action of lateral loads where the deformed structure shape is a dominating factor in the structure at state of equilibrium. In second order analysis, this kind of effects is taken care when the elements are in damaged condition. Tank model shall be assessed with and without P-Delta effect and the results shall be gathered after analyzing and designing the model.

Figure 3. P-Delta Analysis in Staad.Pro.

RCDC Software: By importing the support reactions from the staad models (with and without p-delta analysis) to RCDC software, footing was designed. The results of the two different sets (models with and without p-delta analysis) of footing were collected. The design report of footing of 5 columns (C1 to C5) of tank in RCDC software was scrutinized.

CTA AD DC	DC (4 d annual Canada Davian) 0	4 (1)-s(s) = s)										
Eile Cettie	DC (Advanced Concrete Design) 9	Percete PPS Help										
	🖓 🗊 🌐 🛶 🍈 👝 📻	THE A DO THE	1500									<u> </u>
Design for	27 💷 🌐 🖽 🖬 🐨 🐨 🐨 📟	9.9 + * ≡ 123 ⊡ 17* 18	1 10 00 N									
Input Dat	ta					4	Column Layout					4 1
Sr.No.	Analysis No	Column Mark	Footing Mark	Footing Type	Col Offset (mm)	Raft Thk. (mm)	₩Q,Q,Q,{					
1	790	C1	FC1	Pad	0	0						
2	787	C2	FC2	Pad	0	0						
3	788	C3	FC3	Pad	0	0			3500		3500	
4	789	C4	FC4	Pad	0	0						
5	791	C5	FC5	Pad	0	0						
										_		
										C1		
							0					
							350(
								C2		C3		C4
							1500					
							63					
										<u> </u>		
Ready												IS 456 + IS 13920 - 2016

Figure 4. Designing footing in RCDC Software.

III. RESULTS AND DISCUSSION

RESULTS OF TANK WITH 9 M STAGGING HEIGHT

Displacement of Columns: When the load is applied to the column it tends to sway from its original position towards 'X', 'Y' and 'Z' direction. These maximum displacements of nodes of all columns were obtained from the staad.pro post processing and as shown below.

			1 doite. 2. Di	spracement	Chart of Cold	minis or the	I ank.		
			With P-	Delta Analy	vsis		Without F	P-Delta Ana	lysis
		Х	Y	Z		Х	Y	Z	
Colu	Nod	Dir	Dir	Dir	Resultant	Dir	Dir	Dir	Resultant
mn No.	e No.	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
		27.0	-	0.00		26.8	-	0.00	
1	1	50	0.723	0	27.059	65	0.726	0	26.875
		22.0	-	0.00		21.8	-	0.00	
	489	45	0.481	0	22.050	84	0.483	0	21.889
		13.1		0.00		13.0	_	0.00	
	494	86	0.262	0	13.189	82	0.264	0	13.085
	.,,.	3 24	-	0.00		3.21		0.00	
	499	1	0.090	0.00	3 242	3	0.091	0	3 215
		0.00	0.00	0.00	3.212	0.00	0.00	0.00	5.215
	504	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
	504	27.0	0	0	0.000	26.8	0	0	0.000
2	18	27.0 71	1 255	0.010	27 100	87	1 255	0.010	26.016
	10	71	1.233	0.010	27.100	07	1.233	0.010	20.910
	402	22.4	-	0.00	22 401	22.5	-	0.00	22 227
	492	12.4	0.900	5	22.491	07	0.900	3	22.321
	407	13.4	-	0.00	12 502	13.3	-	0.00	12 207
	497	88	0.631	0	13.502	82	0.631	0	13.397
	500	3.35	-	0.00	2.200	3.33	-	0.00	2 2 4 1
	502	8	0.266	1	3.369	0	0.266	1	3.341
		0.00	0.00	0.00		0.00	0.00	0.00	
	507	0	0	0	0.000	0	0	0	0.000
		27.0	-	0.00		26.8	-	0.00	
3	3	68	1.785	0	27.127	83	1.783	0	26.943
		22.0	-	0.00		21.8	-	0.00	
	491	40	1.439	0	22.087	78	1.436	0	21.925
		13.1	-	0. <mark>00</mark>		13.0	-	0.00	
	496	86	0.999	0	13.224	81	0.996	0	13.119
		3.24	-	0.00		3.21	-	0.00	
	501	0	0.441	0	3.269	2	0.440	0	3.242
		0.00	0.00	0.00		0.00	0.00	0.00	
	506	0	0	0	0.000	0	0	0	0.000
		27.0	-	0.01		26.8	-	0.01	
4	47	71	1.255	0	27.100	87	1.255	0	26.916
		22.4	-	-		22.3	-	-	
	493	70	0.960	0.003	22.491	07	0.960	0.003	22.327
		13.4	-	0.00		13.3	-	0.00	
	498	88	0.631	0	13.502	82	0.631	0	13.397
		3.35	-	-		3.33	-	-	
	503	8	0.266	0.001	3.369	0	0.266	0.001	3.341
		0.00	0.00	0.00		0.00	0.00	0.00	
	508	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
	200	27.0		0.00	0.000	26.8		0.00	0.000
5	2	61	0.831	0.00	27 074	76	0.830	0.00	26 889
		22.0	0.051	0.00	27.071	21.8	0.050	0.00	20.007
	490	38	0.662	0.00	22.048	21.0 77	0.662	0.00	21 887
	+70	12.1	0.002	0.00	22.040	12.0	0.002	0.00	21.00/
	405	13.1 87	0.440	0.00	13 105	82	0.440	0.00	13 000
	493	2.24	0.449	0.00	15.195	02	0.449	0.00	13.090
	500	5.24	- 0.104	0.00	2 2 40	5.21	- 0.104	0.00	2 221
	500	3	0.194	0.00	3.249	0	0.194	0.00	3.221
	505	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.000
1	בטכ ו	0	i U		しいしいし	1 1			0.000

Table: 2. Displacement Chart of Columns of the Tank.

The above table represents the displacement of each node of the column in X, Y and Z direction along with the resultant displacement with respect to the base. It has been observed that the maximum resultant displacement of C1, C2, C3, C4 and C5

(with P-delta) is 27.059 mm, 27.100 mm, 27.127 mm, 27.100 mm and 27.074 mm respectively. Whereas, the maximum resultant displacement of C1, C2, C3, C4 and C5 (without P-delta) is 26.875 mm, 26.916 mm, 26.943 mm, 26.916 mm and 26.889 mm respectively.

Bending Moment of Columns: The results of bending moment of column of tank with and without P-Delta analysis were shown below.

Figure 5. Maximum Bending Moment of Columns of tank with P-Delta Analysis.

Figure 6. Maximum Bending Moment of Columns of tank without P-Delta Analysis

From the above fig., it has been observed that the maximum bending moment comes out for the central column (C5) for the tank with and without P-Delta analysis. i.e., 126.780 KN-m and 125.674 KN-m. The Increase in the bending moment of C5 was 1.106 KN-m and the percentage increase was calculated as +0.88%. However, the maximum percentage increase in B.M was seen in C1 i.e., +0.98%. Whereas, the percentage increase in C2, C3 and C4 comes out to be +0.85%, +0.79% and +0.85% respectively.

Shear Force of Columns: The results of Shear Force of column of tank with and without P-Delta analysis were shown below:

Figure 7. Maximum Shear Force of Columns of tank with P-Delta Analysis.

Figure 8. Maximum Shear Force of Columns of tank without P-Delta Analysis.

From the fig., it has been observed that the maximum shear force comes out for the central column (C5) for the tank with and without P-Delta analysis. i.e., 88.673 KN and 87.844 KN. The Increase in the shear force of C5 was 0.83 KN-m and the percentage increase was calculated as +0.95%. However, the maximum percentage increase in S.F. was seen in C1 i.e., +1.5%. Whereas, the percentage increase in C2, C3 and C4 comes out to be +0.94%, +0.45% and 0.94% respectively.

Total Quantity of Tank: The results of material quantity of the tank with and without P-Delta analysis were shown below: Table: 3. Total Material Quantity of tank.

Tuble: 5: Total Material Quality of talk.								
Tank	Concrete Qty, m3	Steel Qty, KN						
With P-Delta	28.4	17.6						
Without P-Delta	28.4	16.6						

From the above table, it has been concluded that the steel quantity changes while keeping the concrete quantity constant when the P-Delta Analysis is done.

T

OTAL VOLUME OF CONCRETE =	28.4 CU.METER
BAR DIA	WEIGHT
(in mm)	(in New)
8	5805
10	5476
12	5836
16	309
20	169
*** TOTAL=	17595

TOTAL VOLUME OF CONCRETE =	28.4 CU.METER
BAR DIA	WEIGHT
(in mm)	(in New)
8	5805
10	5464
12	4813
16	309
20	169
7	
*** TOTAL=	16561

Figure 10. Material Quantity of tank without P-Delta Analysis.

From the fig., it has been observed that the Total Steel quantity comes out for the tank with and without P-Delta analysis. i.e., 17.60 KN and 16.60 KN. The Increase in the steel quantity was 1.04 KN-m and the percentage increase was calculated as +6.28%.

RESULTS OF TANK WITH 12 M STAGGING HEIGHT

Displacement of Columns: When the load is applied to the column it tends to sway from its original position towards 'X', 'Y' and 'Z' direction. These maximum displacements of nodes of all columns were obtained from the staad.pro post processing and as shown below:

			With P-	Delta A <mark>naly</mark>	<mark>/s</mark> is		Without F	P-Delta Ana	lysis
		Х	Y	Z		X	Y	Z	
Colu	Nod	Dir	Dir	Dir	Resultant	Dir	Dir	Dir	Resultant
mn No.	e No.	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
		43.7				43.4	-		
1	1	69	0.734	0	43.775	35	0.739	0	43.441
		38.3	-			38.0	-		
	489	58	0.493	0	38.361	5	0.499	0	38.053
		28.7	-			28.5	-		
	494	89	0.278	0	28.79	44	0.283	0	28.545
			-			16.4	-		
	499	16.6	0.116	0	16.601	52	0.12	0	16.453
		3.98	-			3.94	-		
	1638	4	0.025	0	3.984	7	0.027	0	3.947
	1643	0	0	0	0	0	0	0	0
		43.7	-	-		43.4	-	-	
2	18	91	1.67	0.01	43.823	57	1.67	0.01	43.489
		38.8	-	0.00		38.5	-	0.00	
	492	14	1.377	3	38.838	04	1.377	3	38.528
		29.2	-			28.9	-		
	497	15	1.049	0	29.234	68	1.049	0	28.987
		16.8	-	0.00		16.6	-	0.00	
	502	45	0.687	1	16.859	96	0.687	1	16.71
			-			4.04	-		
	1641	4.08	0.288	0	4.091	3	0.288	0	4.054
	1646	0	0	0	0	0	0	0	0
		43.7	-			43.4	-		
3	3	87	2.604	0	43.865	53	2.599	0	43.531
	491	38.3	-	0	38.419	38.0	-	0	38.111

TABLE: 4. DISPLACEMENT CHART OF COLUMNS OF THE TANK.

©	2022	JETIR	December	2022,	Volume 9	Issue	12
---	------	--------------	-----------------	-------	----------	-------	----

www.jetir.org (ISSN-2349-5162)

		52	2.259			44	2.253		
		28.7	-			28.5	-		
	496	9	1.819	0	28.847	44	1.814	0	28.601
			-			16.4	-		
	501	16.6	1.256	0	16.648	51	1.252	0	16.499
		3.98	-			3.94	-		
	1640	2	0.551	0	4.02	6	0.549	0	3.984
	1645	0	0	0	0	0	0	0	0
		43.7	-			43.4	-		
4	47	91	1.67	0.01	43.823	57	1.67	0.01	43.489
		38.8	-	-		38.5	-	-	
	493	14	1.377	0.003	38.838	04	1.377	0.003	38.528
		29.2	-			28.9	-		
	498	15	1.049	0	29.234	68	1.049	0	28.987
		16.8	-	-		16.6	-	-	
	503	45	0.687	0.001	16.859	96	0.687	0.001	16.71
			-			4.04	-		
	1642	4.08	0.288	0	4.091	3	0.288	0	4.054
	1647	0	0	0	0	0	0	0	0
		43.7	-			43.4	-		
5	2	8	1.191	0	43.797	46	1.191	0	43.463
		38.3	-			38.0	-		
	490	51	1.017	0	38.364	43	1.017	0	38.056
		28.7				28.5	-		
	495	86	0.797	0	28.797	41	0.797	0	28.552
		16.6	-			16.4	-		
	500	02	0.533	0	16.611	54	0.533	0	16.462
		3.98	-			3.94	-		
	1639	7	0.228	0	3.993	9	0.228	0	3.956
	1644	0	0	0	0	0	0	0	0

The above table represents the displacement of each node of the column in X, Y and Z direction along with the resultant displacement with respect to the base. It has been observed that the maximum resultant displacement of C1, C2, C3, C4 and C5 (with P-delta) is 43.775 mm, 43.823 mm, 43.865 mm, 43.823 mm and 43.797 mm respectively. Whereas, the maximum resultant displacement of C1, C2, C3, C4 and C5 (without P-delta) is 43.441 mm, 43.489 mm, 43.531 mm, 43.489 mm and 43.423 mm respectively.

Figure 11. Maximum Displacement of Columns of Tank with P-Delta Analysis.

Figure 12. Resultant Displacement of Columns of Tank without P-Delta Analysis.

The above fig. shows the resultant displacement of the columns with and without P-Delta analysis. The maximum displacement was seen for the column C3 of both the tanks i.e., tank with and without P-Delta analysis i.e., 43.865 mm and 43.531 mm respectively. The increase in the displacement of this column comes out to be 0.334 mm and percentage increase was +0.77%.

Bending Moment of Columns: The results of bending moment of column of tank with and without P-Delta analysis were shown below:

Figure 13. Maximum Bending Moment of Columns of tank with P-Delta Analysis.

Figure 14. Maximum Bending Moment of Columns of tank without P-Delta Analysis.

From the above fig., it has been observed that the maximum bending moment comes out for the central column (C5) for the tank with and without P-Delta analysis. i.e., 154.631 KN-m and 153.158 KN-m. The Increase in the bending moment of C5 was 1.473 KN-m and the percentage increase was calculated as +0.96%. However, the maximum percentage increase in B.M was seen in C1 i.e., +1.11%. Whereas, the percentage increase in C2, C3 and C4 comes out to be +0.93%, +0.82% and +0.93% respectively.

Shear Force of Columns: The results of Shear Force of column of tank with and without P-Delta analysis were shown below:

Figure 15. Maximum Shear Force of Columns of tank with P-Delta Analysis.

Figure 16. Maximum Shear Force of Columns of tank without P-Delta Analysis.

From the above fig., it has been observed that the maximum shear force comes out for the central column (C5) for the tank with and without P-Delta analysis. i.e., 106.982 KN and 105.910 KN. The Increase in the shear force of C5 was 1.07 KN-m and the percentage increase was calculated as +1.01%. However, the maximum percentage increase in S.F. was seen in C1 i.e., +1.84%. Whereas, the percentage increase in C2, C3 and C4 comes out to be +1.00%, +0.25% and 1.00% respectively.

Total Quantity of Tank: The results of material quantity of the tank with and without P-Delta analysis were shown below: Table: 5. Total Material Quantity of tank.

Tank	Concrete Qty, m3	Steel Qty, KN
With P-Delta	35.0	23.73
Without P-Delta	35.0	22.56

From the above table, it has been concluded that the steel quantity changes while keeping the concrete quantity constant when the P-Delta Analysis is done.

TOTAL VOLUME OF CONCRETE =	35.0 CU.METER	
BAR DIA	WEIGHT	
(in mm)	(in New)	
8	7202	
10	6046	
12	8031	
16	624	
20	1821	
*** TOTAL	= 23724	
Figure 17. Material Quantity of ta	nk with P-Delta Analysis.	
TOTAL VOLUME OF CONCRETE =	35.0 CU.METER	
BAR DIA	WEIGHT	
(in mm)	(in New)	
8	7257	
10	6061	
12	7708	
16	439	
20	826	
25	265	
23		
*** TOTAL=	22555	
Figure 18. Material Quantity of tank without P-Delta Analysis.		
nerging Technologies and Inn	ovative Research (JET)	

JETIR2212275 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c542

From the above fig., it has been observed that the Total Steel quantity comes out for the tank with and without P-Delta analysis. i.e., 23.73 KN and 22.56 KN. The Increase in the steel quantity was 1.17 KN-m and the percentage increase was calculated as +5.19%.

IV. CONCLUSION

Conclusions for Tank having 9m Stagging Height

- The maximum displacement was seen for the column C3 of both the tanks i.e. tank with and without P-Delta analysis i.e. 27.127 mm and 26.943 mm respectively. The increase in the displacement of this column comes out to be 0.184 mm and percentage increase was 0.68%.
- It has been observed that the maximum bending moment comes out for the central column (C5) for the tank with and without P-Delta analysis. i.e., 126.780 KN-m and 125.674 KN-m. The Increase in the bending moment of C5 was 1.106 KN-m and the percentage increase was calculated as +0.88%. However, the maximum percentage increase in B.M was seen in C1 i.e., +0.98%. Whereas, the percentage increase in C2, C3 and C4 comes out to be +0.85%, +0.79% and +0.85% respectively.
- It has been observed that the maximum shear force comes out for the central column (C5) for the tank with and without P-Delta analysis. i.e., 88.673 KN and 87.844 KN. The Increase in the shear force of C5 was 0.83 KN-m and the percentage increase was calculated as +0.95%. However, the maximum percentage increase in S.F. was seen in C1 i.e., +1.5%. Whereas, the percentage increase in C2, C3 and C4 comes out to be +0.94%, +0.45% and 0.94% respectively.
- It has been observed that the Total Steel quantity comes out for the tank with and without P-Delta analysis. i.e., 17.60 KN and 16.60 KN. The Increase in the steel quantity while keeping the concrete quantity constant was 1.04 KN-m and the percentage increase was calculated as +6.28%.

Conclusions for Tank having 12 m Stagging Height

- The maximum displacement was seen for the column C3 of both the tanks i.e. tank with and without P-Delta analysis i.e. 43.865 mm and 43.531 mm respectively. The increase in the displacement of this column comes out to be 0.334 mm and percentage increase was +0.77%.
- It has been observed that the maximum bending moment comes out for the central column (C5) for the tank with and without P-Delta analysis. i.e., 154.631 KN-m and 153.158 KN-m. The Increase in the bending moment of C5 was 1.473 KN-m and the percentage increase was calculated as +0.96%. However, the maximum percentage increase in B.M was seen in C1 i.e., +1.11%. Whereas, the percentage increase in C2, C3 and C4 comes out to be +0.93%, +0.82% and +0.93% respectively.
- It has been observed that the maximum shear force comes out for the central column (C5) for the tank with and without P-Delta analysis. i.e., 106.982 KN and 105.910 KN. The Increase in the shear force of C5 was 1.07 KN-m and the percentage increase was calculated as +1.01%. However, the maximum percentage increase in S.F. was seen in C1 i.e., +1.84%. Whereas, the percentage increase in C2, C3 and C4 comes out to be +1.00%, +0.25% and 1.00% respectively.
- It has been observed that the Total Steel quantity comes out for the tank with and without P-Delta analysis. i.e., 23.73 KN and 22.56 KN. The Increase in the steel quantity while keeping the concrete quantity constant was 1.17 KN-m and the percentage increase was calculated as +5.19%.

Therefore, it can be finally concluded that the difference between the forces and moments of the tanks with and without P-Delta are very small.

V. FUTURE SCOPE

The current analytical study has few limitations which can be covered in further studies. The future scope of the study is as under:

- a) The height of the tank is taken only up to 12 m. Therefore, the height of the supporting columns can be taken more than 12 m for further studies to understand the behaviour of the P-Delta analysis more accurately.
- b) The seismic zone III was considered for the current study; therefore, other seismic zone can be considered which may produce different results in the further study.
- c) Comparative study can be taken in the future comparing the foundation results of RCDC software and STAAD Foundation software.
- d) If the capacity of the tank is increased in the future under the same study, then the results may be differed.

VI. REFERENCES

- T.J. Sullivan, T.H. Pham and G.M. Calvi, (2008), "P-Delta Effects on Tall Rc Frame-Wall Buildings" The 14th World Conference on Earthquake Engineering.
- [2] Anjan K. Bhowmick, Robert G. Driver, Gilbert Y. Grondin, (2009) "Seismic analysis of steel plate shear walls considering strain rate and P-delta effects", Journal of Constructional Steel Research, pp-1149–1159.

- [3] Yousuf Dinar, Samiul Karim, Ayan Barua, Ashraf Uddin, (2013) "P- Delta Effect in Reinforced Concrete Structures of Rigid joint", IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), Volume 10, Issue 4, pp- 42-49.
- [4] Jay Lakhanakiya, Prof. Hemal J. Shah, (2015) "A Parametric Study of an Intze Tank Supported On Different Staging's",
 IJSRD International Journal for Scientific Research & Development, Vol. 3, Issue 09, pp-1108-1112.
- [5] Mr. P. V. Dhanshetti, Prof. C. G. Konapure, (2015) "Effect of P-Delta Action on Multi-Storey Buildings", International Journal of Engineering Research & Technology (IJERT), Vol. 4, Issue 01, pp-668-672.
- [6] Prashant Dhadve, Alok Rao, Atul Rupanvar, Deokate K., Admile P.R, Dr. Nemade. P. D, (2015) "Assessment of P-Delta Effect on High Rise Buildings" International Journal on Recent and Innovation Trends in Computing and Communication, Volume-3 Issue-5, pp-3231-3236.
- Pushparaj J. Dhawale, Prof. G. N. Narule, (2016) "Analysis Of P-Delta Effect On High Rise Buildings", International Journal of Engineering Research and General Science Volume 4, Issue 4, pp-90-103.
- [8] Rupali Bondre, Sandeep Gaikwad, (2016) "Analysis Of Structures With Respect To Linear Static Analysis Using P-Delta Effect", IJARIIE, Vol-2 Issue-4, pp-838-845.
- [9] Lakshmi Subash, Sruthi K Chandran, (2017) "Influence Of P-Delta Effect On Reinforced Concrete Buildings With Vertical Irregularity - A Review", International Research Journal of Engineering and Technology (IRJET), Volume: 04 Issue: 02, pp-709-713.
- [10] Rizwan Akhter, Shree Prakash, Mirza Aamir Baig, (2017) "P-Delta Effect on High Rise Building Subjected to Earth Quake and Wind Load", International Journal of Engineering Science and Computing, pp-14441-14446.
- [11] Phani Kumar.V, M.Deepthi, Saikiran K, R.B.N. Santhosh, (2019) "Behavior of P-Delta Effect in High- Rise Buildings With and Without Shear Wall", International Journal of Recent Technology and Engineering, Volume-8 Issue-2, pp-2060-2068.
- [12] Abdul Tawfiq Pouya, (2019) "P-Delta Effects on Tall Concrete Buildings", Kardan Journal of Engineering and Technology, pp-58-68.
- [13] Himanshu Dwivedi, Dr. M.K. Gupta, (2019) "Analysis and Design of Water Tank Employing STAAD. Pro for Cost Optimization", International Journal of Scientific Research and Engineering Development— Volume 2 Issue 4, pp-597-606.
- K. Surender Kumar, N. Lingeshwaran, Syed Hamim Jeelani, (2020) "Analysis of residential building with STAAD. Pro & ETABS", Materials Today: Proceedings, pp-1-8.